

Reaktionen von Germylenen mit Aziden: Iminogermane, Azidogermane, Tetrazagermole und Hexaazadigermadispirododecane

Joachim Pfeiffer, Walter Maringgele, Mathias Noltemeyer und Anton Meller*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 4. August 1988

Keywords: Germylenes / Germanium nitrogen compounds

Durch sterische Blockierung und/oder Einbau in fünfgliedrige Ringsysteme stabilisierte Germylene, X₂Ge, reagieren mit Azidoverbindungen, YN₃, in Abhängigkeit von der Raumerfüllung der Substituenten X und Y zu Iminogermanen X₂ Ge=NY (1, 2), Azidogermanen, X₂Ge(N₃)NY₂ (6-8), Tetrazagermolen, X₂Ge-(-NY-N=)₂ (10-16), bzw. Hexaazadigermadispirododecanen, [(-NR-CH₂-CH₂-NR-)Ge(μ -NY-)]₂ (17, 18). NMR-(¹H, ¹³C, ¹⁴N, ¹⁵N und ²⁹Si), MS-Daten und Röntgenstrukturanalysen für die Verbindungen 8, 9, 16 und 18 sind angegeben.

Umsetzungen von Aziden mit Germylenen sind bisher nur als Abfangreaktionen für instabile Germylen-Species RR'Ge $[R = R' = F, Cl, (CH_3)_2N; C_2H_5, C_6H_5, 2,4,6-(CH_3)_3C_6H_2;$ $R = Ph, R' = Cl, (CH_3)_2N$] eingesetzt worden und führen mit Methyl- bzw. Phenylazid zu polymeren Germazanen^{1,2)}. Im Rahmen eines Kongresses haben wir unlängst³⁾ berichtet, daß Reaktionen von kinetisch stabilisierten Germylenen⁴⁾ mit Trimethylsilylazid bzw. Benzylazid je nach der Raumerfüllung der Substituenten am Germanium der Azidogruppe zu Azidogermanen, Tetrazagermolen und Hexaazadigermadispirododecanen führen. Weitere Untersuchungen zeigen jetzt, daß bei extremer sterischer Hinderung die sonst als Zwischenstufen postulierten^{1,2)} Iminogermane (wenn auch infolge ihrer außergewöhnlich großen Reaktivität nicht analysenrein) gefaßt und charakterisiert werden können. Das einzige bisher beschriebene Iminogerman $\{ [(CH_3)_3 Si_{N}$, $Ge = N - N = C(CO_{2}CH_{3})_{2}$, das aus Diazomalonsäureester und Bis[bis(trimethylsilyl)amino]germylen (A) erhalten wurde, ist ebenfalls nur spektroskopisch charakterisiert 5.6).

Iminogermane

Setzt man das sterisch stark blockierte Bis[bis(trimethylsilyl)amino]germylen $(A)^{6}$ mit Triethylsilylazid (B) bzw. Tritert-butoxysilylazid (C) um, so erhält man in nicht analysenreiner Form die entsprechenden Iminogermane 1 und 2.

Reactions of Germylenes with Azides: Iminogermanes, Azidogermanes, Tetrazagermoles, and Hexaazadigermadispirododecanes

Germylenes, X₂Ge, stabilized by steric blocking and/or incorporation into five-membered ring systems, react with azido compounds YN₃ depending on the steric requirements of the substituents X and Y to give iminogermanes, X₂Ge = NY (1, 2) azidogermanes X₂Ge(N₃)NY₂ (6-8) tetrazagermoles, X₂Ge(-NY - N =)₂ (10-16), and hexaazadigermadispirododecanes, $[(-NR - CH₂ - CH₂ - NR -)Ge(\mu-NY -)]_2$ (17, 18). NMR (¹H, ¹³C, ¹⁴N, ¹⁵N, and ²⁹Si), MS data, and X-ray structure analyses of the compounds 8, 9, 16, and 18 are reported.

$$1,2 + H_2O \xrightarrow{\text{Pentan}} \left\{ \left[(CH_3)_3 \text{Si} \right]_2 \text{N} \right\}_2 \text{Ge}(OH) \text{NHSiX}_3 \tag{1}$$

$$3: X = C_2H_5, \quad 4: X = O - t - C_4H_9$$

$$2 + CH_3OH \xrightarrow{} \left\{ \left[(CH_3)_3 \text{Si} \right]_2 \text{N} \right\}_2 \text{Ge}(OCH_3) \text{NHSi}(O - t - C_4H_9)_3 \tag{1}$$

$$5$$

Die Iminogermane sind weiße Feststoffe, die äußerst rasch Wasser unter Bildung der Triaminohydroxygerman-Derivate 3 bzw. 4 addieren. Während 1 aus Methanol umgelöst werden kann, addiert 2 Methanol unter Bildung des Triaminomethoxygermans 5.

Azidogermane

Die Reaktionen der Diazagermylene $[(CH_3)_3Si(R)N]_2Ge$ mit $R = (CH_3)_3Si(A)$, 2,6- $(CH_3)_2C_6H_3(D)$ und 2,4,6- $(CH_3)_3-C_6H_2(E)$ mit Trimethylsilylazid führen zu den Azidogermanderivaten 6-8.

$$\begin{bmatrix} (CH_3)_3Si \\ R \end{bmatrix}_2^{CH_2} Ge \xrightarrow{+ 2N_3Si(CH_3)_3}{THF. 25 \circ C} \begin{bmatrix} (CH_3)_3Si \\ R \end{bmatrix}_2^{CH_2} Ge \xrightarrow{N[Si(CH_3)_3]_2}{N_3} (2)$$

A: R = (CH_3)_3Si
D: R = 2,6-(CH_3)_2C_6H_3
E: R = 2,4,6-(CH_3)_3C_6H_2 7 (2,6-(CH_3)_2C_6H_3) (2,6-(CH_3)_2C_6H_3) (2,6-(CH_3)_2C_6H_3) (2,6-(CH_3)_2C_6H_3) (2,6-(CH_3)_2C_6H_3) (2,6-(CH_3)_3C_6H_2) (2,6-(CH_3)_3C_6H_2) (2,6-(CH_3)_3C_6H_2) (2,6-(CH_3)_3C_6H_2) (2,6-(CH_3)_3C_6H_3) (2,6-(CH_3)_3

Die farblosen Kristalle (aus THF oder Acetonitril) werden mit etwa 60% Ausbeute erhalten. Die Röntgenstrukturanalyse von 8 (Abb. 1) zeigt die äußerst gedrängte Anordnung der Substituenten.

Chem. Ber. 122 (1989) 245-252 C VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1989 0009-2940/89/0202-0245 \$ 02.50/0

Tetrazagermole

Setzt man hingegen das sterisch weniger gehinderte 1,3-Bis(trimethylsilyl)-1,3-diaza-2-germa(II)indan (9) (das aufgrund einer Röntgenstrukturanalyse auch im festen Zustand monomer vorliegt) mit Trimethylsilylazid oder auch Triethylsilylazid um [s. Gl. (3)], erhält man die entsprechenden 4,5-Dihydro-1 H-1,2,3,4,5-tetrazagermole 10 und 11. Analoge Verbindungen 12–16 entstehen aus den Reaktionen der stark sterisch belasteten Germylene A, D und E mit Phenyl- bzw. Benzylazid. An Verbindung 16 wurde eine Röntgenstrukturanalyse durchgeführt.

Entsprechende Reaktionen ([2+3]-Cycloadditionen) von instabilen Iminogerman-Zwischenstufen, die sie aus Dihydrogermatriazolen mit Alkyl- bzw. Silylaziden erzeugten, haben Wiberg et al. beschrieben⁷⁻⁹.

Hexaazadigermadispirododecane

Wenn man schließlich das praktisch sterisch unbelastete, lediglich chelatstabilisierte 1,3-Dimethyl-1,3-diaza-2-germa-(II)cyclopentan (F) als Germylenkomponente einsetzt, erhält man sowohl mit Trimethylsilylazid als auch mit Tri-*tert*butoxysilylazid unter Eliminierung von zwei mol N_2 die 1,4,6,8,11,12-Hexaaza-5,7-digermadispiro[4.1.4.1]dodecan-Verbindungen 17 und 18.

Von Verbindung 18 wurde eine Röntgenstrukturanalyse angefertigt.

Diskussion und Spektren

Die vorstehenden Ergebnisse zeigen klar, daß die Reaktionen von stabilen Germylenen mit Aziden offenbar praktisch ausschließlich durch die sterischen Wechselwirkungen der Substituenten gesteuert werden.

Mit abnehmender sterischer Belastung können primär auftretende Iminogermane zunächst unter 1,2-Addition über die Ge = N-Doppelbindung ein weiteres Azidmolekül addieren. Dabei kommt es bei starker sterischer Hinderung zu einer Spaltung der Trimethylsilyl – N₃-Bindung und Bildung der Azidogermane. Bei abnehmender Hinderung erfolgt die Addition über die Ge = N-Bindung als 1,3-dipolare Addition des Azids. Dabei entstehen die Azidogermane bzw. die Tetrazagermole auch bei Einsatz eines Unterschusses von Azid neben unumgesetztem Germylen. Dies zeigt eine größere Reaktivität der Iminogerman-Zwischenstufe im Vergleich zu Germylen. Die bei geringer Hinderung unter Abspaltung von zwei mol N₂ entstehenden Dispiroverbindungen sind als dimere Iminogermane zu verstehen.

Bei den NMR-Spektren ist vor allem das ²⁹Si-Spektrum des Iminogermans 1 bemerkenswert: die extreme Verzahnung der Substituenten führt hier zu fünf verschiedenen Signalen für die Trialkylsilylgruppen. Eine entsprechende Aufspaltung liegt im ¹H-Spektrum vor. Eine derartige Aufspaltung ist weder bei 2 noch bei den anderen Reaktionsprodukten von Germylenen mit Aziden zu finden. Die extreme Abschirmung von 1 dokumentiert sich auch in seiner fehlenden Reaktivität gegenüber Methanol.

Kristallstrukturanalysen der Verbindungen 8, 9, 16 und 18¹⁰⁾

Die Kristalldaten, weitere Angaben zu den Intensitätsmessungen und Berechnungen sind in Tab. 1 zusammengefaßt. Die Atomkoordinaten und isotrope thermische Parameter sind in den Tab. 2-5, ausgewählte Bindungsabstände und -winkel in den Tab. 6-9 aufgeführt. Bei den Verbindungen 9 und 18 liegen zwei unabhängige Moleküle in der asymmetrischen Einheit vor, die als Rotamere bezüglich der Substituenten angesehen werden müssen. Die Abbildungen 1-4 zeigen die Molekülstruktur von 8, 9, 16 und 18.

Bei der Struktur des auch im Festzustand monomeren Diaminogermylens 9 sind vor allem der GeN-Bindungsabstand von 186.1 und 186.6 pm und der NGeN-Bindungswinkel von 87.2° bemerkenswert. Dies insofern, als in einem im Festzustand über NGe-Donorbindungen dimerisierten Diaminogermylen^{3,11)} $[-N(CH_3)-CH_2-CH_2-N(CH_3)-]$ Ge zwei recht ungleiche GeN-Bindungslängen im fünfgliedrigen Ring von 185.6 und 201.4 pm mit einem NGeN-Winkel von 84.8° vorliegen. Die GeN-Donorverbindungen sind dabei 212.3 pm lang¹¹). In der einzigen von dritter Seite¹²) ermittelten Struktur eines Diaminogermylens, des monomeren Bis(2,2,6,6-tetramethylpiperidino)germylens, betragen die beiden GeN-Bindungslängen 187 und 190 pm bei einem NGeN-Winkel von 111.4°. In letzterer Verbindung wird der relativ große Bindungswinkel wohl durch sterische Abstoßung hervorgerufen, in jenen Germylenen, wo das

Verbindung	8	9	16	18
Summenformel	C ₃₀ H ₅₈ GeN ₆ Si ₄	$C_{12}H_{22}GeN_2Si_2$	C ₃₈ H ₅₄ GeN ₆ Si ₂ ·CH ₃ CN	$C_{32}H_{74}Ge_2N_6O_6Si_2$
Molmasse	687.76	323.08	764.70	840.34
Kristallsystem	monoklin	orthorhombisch	monoklin	triklin
Raumgruppe	$P 2_1/c$	P bca	$P 2_1/c$	P 1
Gitterkonstanten [pm,°]				
<i>a</i> =	1754.4(2)	1271.37(4)	1081.3(3)	967.4(5)
b =	969.9(1)	2044.66(7)	3163.9(7)	1462.6(4)
<i>c</i> =	2240.5(2)	2604.50(10)	1213.8(4)	1681.3(4)
α =	90	90	90	85.36(5)
$\beta =$	93.88(1)	90	94.90(3)	89.49(4)
$\dot{\gamma} =$	90	90	90	74.27(5)
Zellvolumen [nm ³]	3.8037	6.7705	4.1375	2.282
Formeleinheiten Z	4	16	4	2
Dichte ρ [Mg m ⁻³]	1.201	1.267	1.228	1.223
Absorptionskoeffizient $\mu_{Mo-K_{\pi}}$ [mm ⁻¹]	0.94	1.9	0.82	1.4
STOE-Vierkreisdiffraktometer				
$Mo-K_{\alpha}, T = 20^{\circ}C$				
Kristallgröße [mm]	$0.5 \times 0.3 \times 0.3$	$0.4 \times 0.4 \times 0.6$	$0.4 \times 0.4 \times 0.5$	$0.5 \times 0.7 \times 0.7$
Reflexe bis 2 $\Theta = 45^{\circ}$				
Gemessen	6369	4897	5362	5914
Symmetrieunabhängig	4301	3865	5218	5914
Zur Verfeinerung dienten	3719	2476	4340	5066
Signifikanzgrenze $ F_o > 4 \sigma (F_o)$				
Verfeinerte Parameter n	418	307	451	434
$R = \Sigma \left(F_{\rm o} - F_{\rm c} \right) / \Sigma F_{\rm o} $	0.045	0.079	0.069	0.055
Rw =	0.041	0.063	0.070	0.063
$w = 1/[\sigma^2 (F_o) + 0.0004 F_o ^2]$				

Tab. 1 Kristalldaten, Intensitätsmessungen und Verfeinerung (SHELX) von 8, 9, 16 und 18

Tab. 2. Ausgewählte Bindungsabstände und -winkel von 8

	Bindungsabstän	nde (pm)	
Ge-N(1) Ge-N(5) N(1)-N(2) N(4)-Si(1) N(5)-Si(3) N(6)-C(1)	186.9 (4) 185.8 (4) 121.1 (7) 177.5 (4) 178.0 (4) 147.3 (6)	Ge-N(4) Ge-N(6) N(2)-N(3) N(4)-Si(2) N(6)-Si(4)	185.9 (4) 185.1 (4) 114.4 (8) 178.7 (5) 178.3 (4)
	Bindungswinke	L (°)	
N(1) - Ge - N(4) N(4) - Ge - N(5) N(4) - Ge - N(6) Ge - N(1) - N(2) Ge - N(4) - Si(1) Si(1) - N(4) - Si(1) Ge - N(5) - C(01) Ge - N(6) - C(1)	106.2(2) 117.4(2) 112.6(2) 125.5(4) 122.6(2) 2) 113.7(2) 120.1(3) 121.7(3)	N(1)-Ge-N(5) N(1)-Ge-N(6) N(5)-Ge-N(6) N(1)-N(2)-N(3) Ge-N(4)-Si(2) Ge-N(5)-Si(3) Ge-N(6)-Si(4) Si(4)-N(6)-C(1)	93.4(2) 107.5(2) 116.7(2) 174.7(6) 123.5(2) 124.8(2) 128.4(2) 107.9(3)

Germanium in einen 5-gliedrigen Ring eingebaut ist, wird er dadurch verengt. Dies ist gleicherweise bei der Struktur des Tetrazagermolderivats **16** sichtbar, wo der NGeN-Winkel im Tetrazagermolring 82.2°, der NGeN-Winkel zwischen den beiden Mesityl(trimethylsilyl)amino-Gruppen jedoch 114.1° beträgt.

In dem Hexaazadigermadispiro-Derivat 18 liegen die GeN-Abstände in den 5-gliedrigen Ringen bei 181, im 4gliedrigen Ring um 184.7 pm – sind also kürzer als in den bisher untersuchten Germylenen. Die NGeN-Bindungswinkel in 18 liegen bei 92.3° im Fünfring und 87.1° im Vierring. Da auch im Azidogerman 8 die Bindungslängen zu den drei verschiedenen Arten von Substituenten nur zwischen 185 und 187 pm differieren, scheint es, daß in Germanium-StickTab. 3. Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope thermische Parameter (pm² $\cdot 10^{-1}$) von **8** (äquivalente isotrope *U* berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors)

1				
	x	У	z	U(eq)
Ge	2437(1)	6715(1)	1622(1)	30(1)
N(1)	2277 (3)	4848(5)	1448(2)	42(2)
N(2)	2589 (3)	4197 (5)	1073(2)	47(2)
N (З)	2846(3)	3500(5)	727(3)	71(2)
N(4)	1669 (2)	7668(4)	1183(2)	38(1)
Si(1)	907(1)	6822(2)	770(1)	54(1)
C(11)	568(4)	7871(8)	102(3)	89(3)
C(12)	74(4)	6547(9)	1226(3)	92(3)
C(13)	1112(4)	5092(8)	444(4)	94(3)
Si(2)	1580(1)	9504(2)	1190(1)	48(1)
C(21)	2199(4)	10303(6)	1792(3)	64 (3)
C(22)	585(3)	10074(8)	1325(3)	80(3)
C(23)	1814(4)	10327(7)	473(3)	66(3)
N(5)	2328(2)	6478(4)	2435(2)	35(1)
Si(3)	2032(1)	4920(2)	2769(1)	49(1)
C(31)	2724(4)	3473(6)	2773(3)	67 (3)
C(32)	1908(4)	5305(8)	3581(3)	73(3)
C(33)	1100(4)	4237(8)	2433(3)	77(3)
C(01)	2405(3)	7655(6)	2839(2)	38(2)
C(02)	1766(3)	8408(7)	2973(2)	50(2)
C(03)	1854(4)	9500(7)	3378(3)	65(3)
C(04)	2560(5)	9842(6)	3655(3)	59(3)
C(05)	3170(4)	9053(6)	3534(2)	51(2)
C(06)	3110(3)	7939(6)	3141(2)	40(2)
C(07)	3797(3)	7038(6)	3076(3)	57(2)
C(08)	2630(6)	11038(7)	4095(3)	95(4)
C(09)	982(3)	8044(8)	2709(3)	77(3)
N(6)	3402(2)	7167(4)	1399(2)	29(1)
Si(4)	4238(1)	6117(2)	1427(1)	37(1)
C(41)	4148(3)	4549(6)	1895(3)	54(2)
C(42)	5110(3)	7044(6)	1731(3)	52(2)
C(43)	4483(4)	5520(6)	6/3(2)	56(2)
C(1)	3531(3)	8354(5)	1009(2)	31(2)
C(2)	3361(3)	8256(6)	387(2)	39(2)
C(3)	3594(3)	9299(6)	19(3)	49(2)
C(4)	3966(3)	10455(6)	240(3)	52(2)
C(5)	4100(3)	10564(6)	847(3)	49(2)
C(6)	3899(3)	9529(5)	1242(2)	38(2)
C(7)	2921(3)	7051(6)	104(2)	51(2)
C(8)	4229(4)	11584(7)	-172(4)	85(3)
C(9)	4094(3)	9781(6)	1904(2)	52(2)

Tab. 4. Ausgewählte Bindungsabstände und -winkel von 9

	Bindur	igsabstände	(pm)	
Ge-N(1) N(1)-Si(1) Si(1)-C(11) Si(1)-C(13) Ge'-N(1') N(1')-Si(1') C(6')-N(2')	186.1 174.9 187.0 184.2 184.5 176.8 138.4	(8) (9) (12) (11) (9) (9) (15)	Ge-N(2) 1 N(1)-C(1) 1 Si(1)-C(12) 1 N(2)-Si(2) 1 Ge ¹ -N(2') 1 N(1')-C(1') 1 N(2')-Si(2') 1	86.6 (9) 38.8 (15) 86.6 (13) 76.7 (9) 86.8 (9) 38.7 (15) 75.0 (9)
	Bindur	gswinkel (•)	
$\begin{split} & N(1) - Ge - N(2) \\ & Ge - N(1) - C(1) \\ & N(1) - Si(1) - C(1) \\ & C(11) - Si(1) - C(1) \\ & C(1) - C(2) \\ & C(1) - C(2) \\ & C(1) - C(2) - C(6) \\ & C(6) - N(2) - Si(2) \\ & C(6) - N(2) - Si(2) - C(1) \\ & C(2) - Si(2) - C(2) \\ & C(2) - Si(2) - C(2) \\ & C(2) - Si(2) - C(1) \\ & Si(1^{1}) - N(1^{1}) - C(1^{2}) - C(6) \\ & C(6^{1}) - N(2^{1}) - C(6) \\ & C(6^{1}) - N(2^{1}) - Si(2^{1}) - Si$	11) (12) (13)) 22) 22) 23) (23) (1) C(12') C(13') C(13') C(13') C(13') C(13') C(13') C(22') C(22') C(22') C(23')	87.2(4) 111.5(6) 112.2(5) 110.8(6) 127.1(10) 113.3(10) 111.9(7) 124.7(7) 110.5(5) 109.1(5) 110.6(6) 123.8(5) 124.8(8) 110.7(5) 107.1(5) 107.1(5) 105.6(10) 111.8(7) 123.7(7) 109.9(5) 107.3(5)	$ \begin{array}{l} Ge-N\left(1\right)-Si\left(1\right)\\ Si\left(1\right)-N\left(1\right)-C\left(1\right)\\ N\left(1\right)-Si\left(1\right)-C\left(12\right)\\ N\left(1\right)-Si\left(1\right)-C\left(13\right)\\ C\left(12\right)-Si\left(1\right)-C\left(13\right)\\ N\left(1\right)-C\left(1\right)-C\left(6\right)\\ C\left(5\right)-C\left(6\right)-N\left(2\right)\\ Ge-N\left(2\right)-Si\left(2\right)-C\left(22\right)\\ N\left(2\right)-Si\left(2\right)-C\left(22\right)\\ C\left(21\right)-Si\left(2\right)-C\left(22\right)\\ Ge'-N\left(1'\right)-C\left(1'\right)\\ N\left(1'\right)-Si\left(1'\right)-C\left(1'\right)\\ N\left(1'\right)-Si\left(1'\right)-C\left(12'\right)\\ C\left(11'\right)-Si\left(1'\right)-C\left(12'\right)\\ C\left(11'\right)-Si\left(1'\right)-C\left(2'\right)\\ Ge'-N\left(2'\right)-Si\left(2'\right)-C\left(2'\right)\\ Ge'-N\left(2'\right)-Si\left(2'\right)-C\left(2'\right)\\ Ge'-N\left(2'\right)-Si\left(2'\right)-C\left(2'\right)\\ C\left(21'\right)-Si\left(2'\right)-C\left(2'\right)\\ C\left(21'\right)-Si\left(2'\right)-C\left(2'\right)\\ C\left(21'\right)-Si\left(2'\right)-C\left(2'\right)\\ C\left(21'\right)-Si\left(2'\right)-C\left(22'\right)\\ C\left(21'\right)-Si\left(2'\right)-C\left(22'\right)\\ \end{array}$	124.4(5) 124.1(7) 108.6(5) 107.1(5) 109.8(7) 115.5(10) 126.8(10) 123.3(5) 108.3(5) 108.3(5) 108.4(6) 109.4(6) 111.4(7) 109.4(5) 111.3(6) 111.3(6) 124.8(10) 127.1(11) 124.4(5) 109.5(5) 110.9(6)

Abb. 1. Molekülstruktur von 8

Abb. 2. Molekülstruktur von 9

Abb. 3. Molekülstruktur von 16

Tab. 5. Atomkoordinaten (·10⁴) und äquivalente isotrope thermische Parameter ($pm^2 \cdot 10^{-1}$) von 9 (äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_n -Tensors)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		x	У	z	U(eq)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	1004(1)	1504(1)	720(1)	62(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	1501(7)	891(4)	250(3)	50(4)
$\begin{array}{ccccccc} C(11) & 1438(11) & -571(5) & 134(5) & 90(6) \\ C(12) & 3517(10) & 193(6) & 210(6) & 100(7) \\ C(13) & 2048(12) & 87(6) & 1223(4) & 101(7) \\ C(1) & 1342(9) & 1096(5) & -252(5) & 50(5) \\ C(2) & 1642(10) & 766(6) & -704(5) & 68(5) \\ C(3) & 1414(12) & 1009(7) & -1180(5) & 87(6) \\ C(4) & 895(12) & 1600(7) & -1217(5) & 96(7) \\ C(5) & 584(10) & 1926(6) & -798(5) & 71(6) \\ C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 651(1) \\ \end{array}$	i(1)	2115(3)	156(2)	419(1)	59(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(11)	1438(11)	-571(5)	134(5)	90(6)
$\begin{array}{ccccccc} C(13) & 2048(12) & 87(6) & 1123(4) & 101(7) \\ C(1) & 1342(9) & 1096(5) & -252(5) & 50(5) \\ C(2) & 1642(10) & 766(6) & -704(5) & 68(5) \\ C(3) & 1414(12) & 1009(7) & -1180(5) & 87(6) \\ C(4) & 895(12) & 1600(7) & -1217(5) & 96(7) \\ C(5) & 584(10) & 1926(6) & -798(5) & 71(6) \\ C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$	(12)	3517(10)	193(6)	210(6)	100(7)
$\begin{array}{cccccccc} C(1) & 1342(9) & 1096(5) & -252(5) & 50(5) \\ C(2) & 1642(10) & 766(6) & -704(5) & 68(5) \\ C(3) & 1414(12) & 1009(7) & -1180(5) & 87(6) \\ C(4) & 895(12) & 1600(7) & -1217(5) & 96(7) \\ C(5) & 584(10) & 1926(6) & -798(5) & 71(6) \\ C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$	(13)	2048(12)	87(6)	1123(4)	101(7)
$\begin{array}{cccccc} C(2) & 1642(10) & 766(6) & -704(5) & 68(5) \\ C(3) & 1414(12) & 1009(7) & -1180(5) & 87(6) \\ C(4) & 895(12) & 1600(7) & -1217(5) & 96(7) \\ C(5) & 584(10) & 1926(6) & -798(5) & 71(6) \\ C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 651 \\ \end{array}$:(1)	1342(9)	1096(5)	-252(5)	50(5)
$\begin{array}{cccccc} C(3) & 1414(12) & 1009(7) & -1180(5) & 87(6) \\ C(4) & 895(12) & 1600(7) & -1217(5) & 96(7) \\ C(5) & 584(10) & 1926(6) & -798(5) & 71(6) \\ C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$	(2)	1642(10)	766(6)	-704(5)	68(5)
$\begin{array}{ccccc} C(4) & 895(12) & 1600(7) & -1217(5) & 96(7) \\ C(5) & 584(10) & 1926(6) & -798(5) & 71(6) \\ C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$:(3)	1414(12)	1009(7)	-1180(5)	87(6)
$\begin{array}{ccccc} C(5) & 584(10) & 1926(6) & -798(5) & 71(6) \\ C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$	(4)	895(12)	1600(7)	- 1217(5)	96(7)
$\begin{array}{cccccc} C(6) & 799(9) & 1692(5) & -308(4) & 53(5) \\ N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge^{1} & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$	(5)	584(10)	1926(6)	-798(5)	71(6)
$\begin{array}{ccccccc} N(2) & 541(7) & 1991(4) & 158(3) & 50(4) \\ Si(2) & -100(3) & 2754(2) & 217(2) & 68(2) \\ C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge' & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$:(6)	799(9)	1692(5)	-308(4)	53(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)	541(7)	1991(4)	158(3)	50(4)
$\begin{array}{cccccc} C(21) & -227(11) & 2945(6) & 901(5) & 104(7) \\ C(22) & -1427(10) & 2719(6) & -71(5) & 96(7) \\ C(23) & 708(10) & 3392(5) & -101(6) & 112(8) \\ Ge^{1} & 4075(1) & 3412(1) & 6720(1) & 65(1) \\ \end{array}$	i(2)	-100(3)	2754(2)	217(2)	68(2)
C(22) -1427(10) 2719(6) -71(5) 96(7) C(23) 708(10) 3392(5) -101(6) 112(8) Ge' 4075(1) 3412(1) 6720(1) 65(1)	(21)	-227(11)	2945(6)	901(5)	104(7)
C(23) 708(10) 3392(5) -101(6) 112(8) Ge' 4075(1) 3412(1) 6720(1) 65(1)	(22)	-1427(10)	2719(6)	-71(5)	96(7)
Ge' 4075(1) 3412(1) 6720(1) 65(1)	(23)	708(10)	3392(5)	-101(6)	112(8)
	e	4075(1)	3412(1)	6720(1)	65(1)
N(1') 3336(7) 3026(4) 7249(3) 55(4)	(1')	3336(7)	3026(4)	7249(3)	55(4)
Si(1') 2562(3) 2314(2) 7176(1) 64(1)	i(1')	2562(3)	2314(2)	7176(1)	64(1)
C(11') 1157(10) 2517(6) 7298(5) 90(6)	(11')	1157(10)	2517(6)	7298(5)	90(6)
C(12') 3023(12) 1661(5) 7610(6) 106(7)	(12')	3023(12)	1661(5)	7610(6)	106(7)
C(13') 2730(11) 2030(6) 6505(4) 92(6)	(13')	2730(11)	2030(6)	6505(4)	92(6)
C(1') 3450(10) 3373(6) 7703(5) 55(5)	(1')	3450(10)	3373(6)	7703(5)	55(5)
C(2') 2980(10) 3202(6) 8174(5) 66(5)	(2')	2980(10)	3202(6)	8174(5)	66(5)
C(3') 3164(13) 3584(8) 8601(5) 89(7)	(3')	3164(13)	3584 (8)	8601(5)	89(7)
C(4') 3772(12) 4132(7) 8562(6) 85(7)	(4')	3772(12)	4132(7)	8562(6)	85(7)
C(5') 4238(11) 4305(6) 8108(5) 73(6)	(5')	4238(11)	4305(6)	8108(5)	73(6)
C(6') 4091(10) 3934(5) 7675(5) 54(5)	(6')	4091(10)	3934(5)	7675(5)	54(5)
N(2') 4501(7) 4049(4) 7191(3) 52(4)	(2')	4501(7)	4049(4)	7191(3)	52(4)
Si(2') 5274(3) 4729(2) 7036(1) 65(1)	i(2')	5274(3)	4729(2)	7036(1)	65(1)
C(21') 4502(10) 5488(5) 7142(5) 99(7)	(21')	4502(10)	5488(5)	7142(5)	99(7)
C(22') 6487(9) 4729(5) 7430(5) 84(6)	(22')	6487(9)	4729(5)	7430(5)	84(6)
C(23') 5635(10) 4655(6) 6353(5) 93(6)	(23')	5635(10)	4655(6)	6353(5)	93(6)

Iminogermane, Azidogermane, Tetrazagermole und Hexaazadigermadispirododecane

Tab. 6. Ausgewählte Bindungsabstände und -winkel von 16

Bi	ndungsabstä	nde (pm)	
Ge(1) -N(1) 18: Ge(1) -N(3) 18: Si(1) -N(1) 17: Si(2) -C(4) 18: Si(2) -C(7) 18: N(1) -C(41) 14: N(3) -N(5) 13: N(4) -N(6) 13: N(5) -N(6) 12:	2.2 (5) 5.0 (6) 8.2 (5) 4.6 (8) 8.4 (5) 5.1 (8) 5.5 (7) 9.4 (7) 5.0 (8) 5.0 (9)	Ge(1)-N(2) $Ge(1)-N(4)$ $Si(1)-C(3)$ $Si(2)-C(6)$ $Si(2)-C(8)$ $N(2)-C(31)$ $N(3)-C(1)$ $N(4)-C(2)$ $N(11)-C(51)$	183.4 (5) 185.2 (5) 186.4 (7) 187.1 (8) 186.0 (8) 186.7 (8) 144.6 (8) 146.1 (9) 146.6 (9) 114.6 (15)
Bi	ndungswinke	1 (')	
$\begin{array}{l} N(1) - Ge(1) - N(2) \\ N(2) - Ge(1) - N(3) \\ N(2) - Ge(1) - N(3) \\ N(1) - Si(1) - C(3) \\ C(3) - Si(1) - C(4) \\ C(3) - Si(2) - C(6) \\ C(6) - Si(2) - C(6) \\ C(6) - Si(2) - C(7) \\ C(6) - Si(2) - C(7) \\ Ge(1) - N(1) - C(41) \\ Ge(1) - N(1) - C(41) \\ Ge(1) - N(2) - C(31) \\ Ge(1) - N(3) - C(1) \\ Ge(1) - N(3) - C(1) \\ Ge(1) - N(3) - C(1) \\ Ge(1) - N(4) - C(2) \\ N(3) - C(1) - C(12) \\ N(3) - C(1) - C(12) \\ N(1) - C(41) - C(42) \\ N(1) - C(41) - C(42) \\ N(1) - C(51) - C(52) \\ \end{array}$	$114.1(2) \\108.6(2) \\120.1(2) \\107.2(3) \\108.5(4) \\106.5(4) \\111.2(3) \\106.4(4) \\122.7(3) \\115.6(4) \\122.6(4) \\122.6(5) \\131.9(4) \\112.5(5) \\131.9(4) \\114.3(6) \\117.1(5) \\121.1(5) \\121.1(5) \\119.8(6) \\178.5(10) \\178.5(1$	$\begin{array}{c} N(1) - Ge(1) - N(3) \\ N(1) - Ge(1) - N(4) \\ N(3) - Ge(1) - N(4) \\ N(1) - Si(1) - C(4) \\ N(1) - Si(1) - C(5) \\ C(4) - Si(2) - C(7) \\ N(2) - Si(2) - C(8) \\ C(7) - Si(2) - C(8) \\ Ge(1) - N(1) - C(41) \\ Ge(1) - N(2) - Si(2) \\ Si(2) - N(2) - C(31) \\ Ge(1) - N(3) - C(1) \\ Ge(1) - N(4) - N(6) \\ N(6) - N(4) - C(2) \\ N(4) - C(6) - N(5) \\ N(4) - C(2) - C(21) \\ N(2) - C(31) - C(36) \\ N(1) - C(41) - C(46) \\ \end{array}$	119.9(2) 108.7(2) 82.2(2) 111.2(3) 115.5(3) 107.6(3) 107.3(3) 107.2(4) 120.2(4) 121.8(3) 116.5(4) 133.9(4) 113.9(5) 116.1(5) 115.8(6) 120.7(6)

stoff-Verbindungen die GeN-Abstände ziemlich unabhängig von der Wertigkeit des Germaniums sind und ebenso wie die NGeN-Bindungswinkel weitgehend variabel und durch sterische und Packungseffekte beeinflußt sind.

Die Methylgruppen von 18 sind starker thermischer Bewegung unterworfen, jedoch befindet sich unter den stärksten Restelektronendichtemaxima $< 0.7 \ e/Å^3$ keines in der Nähe der Methylgruppen. Plots mit thermischen Ellipsoiden zeigen zwar große, aber im Sinne von Rotationsschwingungen der Methylgruppen vertretbar geformte Aufenthaltsbereiche (50% Wahrscheinlichkeit). Dabei ist das zweite unabhängige (mit Strichmarkierung versehene) Molekül offenbar weniger betroffen. Das für die diskutierten Daten wesentliche anorganische Grundgerüst der Moleküle ist weitgehend isotrop.

Für die Förderung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie. Herrn M. Haase danken wir für die Durchführung der Röntgenstrukturanalyse der Verbindung 8, Herrn F. Pauer für jene der Verbindung 16.

Experimenteller Teil

Elementaranalysen: Analytisches Laboratorium des Instituts für Anorganische Chemie, Göttingen. – NMR-Spektren (Standards): ¹H, ¹³C, ²⁹Si (TMS int.); ¹⁴N, ¹⁵N (CH₃NO₂ ext.), Lösungen in CDCl₃, Bruker WP 80 SY und Bruker AM 250. – Massenspektren: EI 70 eV; FI Varian MAT-CH 5; FD Finnigan-MAT 8230. – Ausgangsverbindungen: {[(CH₃)₃Si]₂N}₂Ge (A)¹³, [-N(CH₃)(CH₂)₂-N(CH₃)–]Ge (F)⁴, {[2,6-(CH₃)₂C₆H₃][(CH₃)₃Si]N}₂Ge (D)⁴, {[2,4.6-(CH₃)₃C₆H₂][(CH₃)₃Si]N}₃Ce (E)⁴, C₆H₅N₃¹⁴, C₆H₅CH₂N₃¹⁵, (CH₃)₃SiN₃ (Handelspräparat), (C₂H₃)₃SiN₃¹⁶, GeCl₂ · C₄H₈O₂¹⁷]. [(CH₃)₃CO]₃SiN₃ wurde analog zu den in Lit.¹⁶) beschriebenen Aziden aus [(CH₃)₃CO]₃SiCl und NaN₃ hergestellt, Ausb. 87%, Sdp.

Chem. Ber. **122** (1989) 245-252

 $47^{\circ}C/0.002 \text{ mbar.} - MS (EI): m/z (%) = 274 (66) [M - CH_3]^+,$ 162 (100). - NMR: $\delta^{1}H = 1.34$ (s); $\delta^{13}C = 31.29$; $\delta^{14}N = -145.39$ (s), -205.83 (s), -316 (br); $\delta^{29}Si = -94.51$.

Alle Reaktionen wurden unter trockenem N2 durchgeführt.

Allgemeine Vorschrift für die Umsetzungen von Germylenen mit Organyl- bzw. Silylaziden, Darstellung von 1, 2, 6–8, 10–18: Zu 0.025 mol des jeweiligen Germylens im angegebenen Lösungsmittel werden bei der jeweils angegebenen Temperatur entsprechend der Stöchiometrie der Reaktionsgleichung ein oder zwei Äquivalente des Azids unter Rühren so getropft, daß eine gleichmäßige, nicht zu heftige N₂-Entwicklung erfolgt. Nach Stehenlassen (ca. 12 h) bei Raumtemp. wird abfiltriert bzw. das Lösungsmittel bei vermindertem Druck entfernt. Die Produkte werden (verlustreich) durch Umkristallisation gereinigt. Versuche zu Hochvakuumdestillation (bzw. Sublimation) führen zur Zersetzung (für Tetrazagermole siehe hierzu Lit.⁸⁾). Versuche mit Unter- oder Überschuß an Azid führen zu den gleichen Produkten, die jedoch mit unumgesetzten Edukten verunreinigt sind.

Bis[bis(trimethylsilyl)amino](triethylsilylimino)german (1) und Bis[bis(trimethylsilyl)amino](tri-tert-butoxysilylimino)german (2)

1: Aus 9.8 g (25 mmol) $\{[(CH_3)_3Si]_2N\}_2Ge$ (A) und 3.9 g (25 mmol) $(C_2H_5)_3SiN_3$ bei 25 °C in THF. Umgelöst aus Methanol. Ausb. 7.4 g

Tab. 7. Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope thermische Parameter (pm² $\cdot 10^{-1}$) von **16** (äquivalente isotrope *U* berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors)

	x	У	z	U(eq)
Ge(1)	1887(1)	3497(1)	8106(1)	27(1)
Si(1)	-571(2)	4034(1)	7650(1)	36(1)
Si(2)	4465(2)	3075(1)	8885(2)	37(1)
N(1)	708(4)	3855(2)	8553(4)	30(2)
N(2)	3250(5)	3440(2)	9103(4)	31(2)
N(3)	1437(5)	2968(2)	7559(4)	38(2)
N(4)	2089(5)	3602(2)	6631(4)	33(2)
N(5)	1495(5)	2931(2)	6420(4)	40(2)
N(6)	1805(5)	3267(2)	5954(4)	42(2)
C(1)	1180(6)	2565(2)	8078(5)	38(2)
C(2)	2399(6)	3988(2)	6045(5)	38(2)
C(3)	-1828(6)	4188(3)	8531(6)	51(3)
C(4)	-1161(7)	3610(3)	6701(7)	60(3)
	-202(7)	4007(3)	7700(6)	57(3)
C(0)	4/33(0)	3047(3)	9333(0)	54(3)
	5893(7)	3266(3)	9710(7)	59(3)
	-175(6)	2417(2)	8001(5)	35(2)
C(12)	-1001(6)	2417(2)	7102(5)	39(2)
C(12)	-2207(6)	2360(2)	7048(6)	43(3)
C(14)	-2583(7)	2117(3)	7885(6)	53(3)
C(15)	-1771(7)	2017(3)	8796(6)	52(3)
C(16)	-576(7)	2173(2)	8862(6)	45(3)
C(21)	3689(6)	4001(2)	5634(5)	37(2)
C(22)	4403(7)	4368(3)	5801(5)	43(3)
C(23)	5578(7)	4397 (3)	5409(6)	56(3)
C(24)	6035(7)	4061(3)	4847(6)	52(3)
C(25)	5329(7)	3704(3)	4659(6)	54(3)
C(26)	4158(7)	3667(3)	5050(5)	43(3)
C(31)	3502(5)	3746(2)	9977(5)	30(2)
C(32)	3951(6)	4148(2)	9756(5)	33(2)
C(33)	4126(6)	4439(2)	10616(6)	41(3)
C(34)	3893(6)	4353(2)	11694(5)	35(2)
C(35)	3538(6)	3936(2)	11904(5)	39(3)
C(36)	3338(6)	3635(2)	11087(5)	32(2)
C(37)	42/2(/)	4270(2)	12502(5)	46(3)
C(30)	2903(7)	3104(3)	11391(6)	47(3)
C(39)	2991(7)	3194(2)	9725(5)	47(3)
C(41)	917(6)	A322(2)	10181(5)	25(2)
C(42)	831(6)	4384(2)	11321(5)	39(2)
C(44)	442(6)	4067(3)	11992(5)	39(2)
C(45)	101(6)	3694(3)	11503(5)	44(3)
C(46)	148(6)	3614(2)	10390(5)	33(2)
C(47)	1286(7)	4691(2)	9491(5)	44(3)
C(48)	423 (9)	4133(3)	13225(6)	68(3)
C(49)	-303(7)	3196(2)	9906(6)	44(3)
N(11)	7444 (8)	183(3)	7828(8)	92(4)
C(51)	7303 (8)	493 (4)	7343 (8)	66(4)
C(52)	7161(9)	881(4)	6744 (9)	103(5)

(57%) weißer Feststoff, nicht analysenrein. Schmp. 118-121 °C. – MS: m/z (%) EI 523 (6) [M]⁺, 346 (100); FI 523 (100). – NMR: $\delta^{1}H = -0.07$ (s), -0.04 (s), 0.23 (s), 0.25 (s), (alle SiCH₃), 0.43-0.72 (m, SiCH₂), 0.86-0.93 [m, (CH₃)]; $\delta^{29}Si = -4.11$, 2.15, 3.45, 4.16, 5.13.

Tab. 8. Ausgewählte Bindungsabstände und -winkel von 18

	Bindun	gsabständ	e (pm)		
	181.0 184.2 185.3 143.6 146.7 170.7 161.6 162.3 151.3 150.0 141.6 177.1 265.9 134.8 146.5 138.3 183.6 158.4 133.8	(5) (3) (4) (10) (9) (4) (4) (4) (8) (9) (7) (12) (1) (22) (29) (22) (29) (20) (4) (7) (10) (8)	Ge'-N(2') Ge'-Ge'A N(1')-C(1') C(2')-C(3') N'-Ge'A Si'-O(2') O(1')-C(10') C(10')-C(10') C(10')-C(20') Ge-N(1) Ge-NA N(1)-C(2) C(3)-N(2) N-Si Si-O(1) Si-O(3) O(2)-C(20)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))
	Bindung	gswinkel ((*)		
$\begin{split} & \text{N}(1') - \text{Ge'} - \text{N}(2') \\ & \text{N}(2') - \text{Ge'} - \text{N'} \\ & \text{N}(2') - \text{Ge'} - \text{Ge'} \text{A} \\ & \text{N}(2') - \text{Ge'} - \text{N'} \text{A} \\ & \text{Ge'} - \text{N}(1') - \text{Ge'} - \text{N'} \text{A} \\ & \text{Ge'} - \text{N}(1') - \text{C}(1') - \text{C}(1') - \text{C}(1') - \text{C}(1') - \text{C}(2') - \text{C}(3') \\ & \text{Ge'} - \text{N}(2') - \text{C}(4') \\ & \text{Ge'} - \text{N}(2') - \text{C}(4') \\ & \text{Ge'} - \text{N}(2') - \text{C}(3') - \text{C}(3') \\ & \text{Ge'} - \text{N}(2') - \text{C}(3') - \text{C}(3') \\ & \text{Ge'} - \text{C}(3') \\ & \text{Ge-N}(1) - \text{Ge-PA} \\ & \text{N} - \text{Ge-GeA} \\ & \text{N} - \text{Si} - \text{O}(1) \\ & \text{Ge-N} - \text{CeA} \\ & \text{N} - \text{Si} - \text{O}(1) \\ & \text{Gl}(1) - \text{Si} - \text{O}(2) \\ & \text{Gl}(1) - \text{C}(10) \\ & \text{Si} - \text{O}(1) - \text{C}(10) \\ & \text{Si} - \text{O}(1) - \text{C}(10) \\ & \text{Gl}(1) - \text{C}(10) - \text{C}(1) \\ & \text{Si} - \text{O}(2) - \text{C}(20') - \text{C}(2') \\ & \text{Si} - \text{O}(3) - \text{C}(30) \\ & \text{Gl}(2') - \text{C}(2') - \text{C}(2') \\ & \text{Si} - \text{O}(3) - \text{C}(3') \\ & \text{Si} - \text{C}(3) - \text{C}(3') \\ & \text{Si} - \text{C}(3) - \text{C}(3') \\ & \text{Si} - \text{C}(3) - \text{C}(3') \\ & \text{Si}$) 1 1 1 2') 1 2') 1 1 1 1 1 1 (11') 1 (11') 1	92.3(2) 119.4(2) 135.4(2) 115.9(2) 87.1(2) 125.2(4) 118.4(5) 109.2(5) 121.6(4) 134.2(2) 132.1(2) 104.0(2) 11.0(2) 109.5(5) 10.9(4) 109.5(5) 10.9(4) 09.7(5) 22.1(3) 35.3(4) 43.6(1) 21.6(3) 43.8(1) 13.5(12) 10.9(4) 09.5(12) 11.6(12) 11.6(12) 11.6(12) 11.6(12) 11.6(12) 11.6(12) 11.5(7) 46.3(6) 12.5(6) 11.5(7) 46.3(6) 10.2(9) 55.6(7) 10.7(0)	$\begin{split} & \text{N(1')} - \text{Ge'} - \text{N'} \\ & \text{N(1')} - \text{Ge'} - \text{Ge'A} \\ & \text{N'} - \text{Ge'} - \text{Ge'A} \\ & \text{N(2')} - \text{Ge'} - \text{N'A} \\ & \text{Ge'} - \text{N(1')} - \text{C(2')} \\ & \text{Ge'} - \text{N(1')} - \text{C(2')} \\ & \text{Ge'} - \text{N(1')} - \text{C(2')} \\ & \text{Ge'} - \text{N(2')} - \text{C(3')} \\ & \text{Ge'} - \text{N(2')} - \text{C(3')} \\ & \text{Ge'} - \text{N(2')} - \text{C(3')} \\ & \text{Ge'} - \text{N'} - \text{Ge'A} \\ & \text{N'} - \text{Si'} - \text{O(1')} \\ & \text{Ge'} - \text{N'} - \text{Ge'A} \\ & \text{N'} - \text{Si'} - \text{O(1')} \\ & \text{Ge'} - \text{N'} - \text{Ge'A} \\ & \text{N'} - \text{Si'} - \text{O(2')} \\ & \text{G(1')} - \text{Si'} - \text{O(2')} \\ & \text{G(1')} - \text{Si'} - \text{O(2')} \\ & \text{G(2')} - \text{C(20')} - \text{C(20')} \\ & \text{G(2')} - \text{C(20')} - \text{C(20')} \\ & \text{O(2')} - \text{C(20')} - \text{C(30')} \\ & \text{O(3')} - \text{C(30')} - \text{C(32')} \\ & \text{O(3')} - \text{C(30')} - \text{C(32')} \\ & \text{N(2)} - \text{Ge} - \text{N(2)} \\ & \text{N(2)} - \text{Ge} - \text{N(2)} \\ & \text{N(2)} - \text{Ge} - \text{N(2)} \\ & \text{N(2)} - \text{Ge} - \text{NA} \\ & \text{N} - \text{Ge} - \text{NA} \\ & \text{N} - \text{Ge} - \text{NA} \\ & \text{M} - \text{Ge} - \text{NA} \\ & \text{N} - \text{Ge} - \text{NA} \\ & \text{N} - \text{Ge} - \text{NA} \\ & \text{N} - \text{Si} = \text{Si} \\ & \text{Si} - \text{N} - \text{GeA} \\ & \text{N} - \text{Si} = \text{O(2)} \\ & \text{N} - \text{Si} = \text{O(3)} \\ & \text{O(2)} - \text{Si} = \text{O(3)} \\ & \text{O(1)} - \text{C(10)} - \text{C(11)} \\ & \text{O(1)} - \text{C(10)} - \text{C(11)} \\ & \text{O(1)} - \text{C(10)} - \text{C(11)} \\ & \text{O(1)} - \text{C(10)} - \text{C(12)} \\ & \text{O(3)} - \text{C(20)} - \text{C(23)} \\ & \text{O(3)} - \text{C(30)} - \text{C(30)} \\ & \text{O(3)} - \text{C(30)} - \text{C(30)} \\ \end{array} $	122.6(2 132.3(2 43.7(1) 122.7(2 43.4(1) 100.2(4 108.3(6 106.6(4 105.1(2) 110.3(2) 110.5(1) 110.5(1) 137.1(4 139.0(4 ') 106.3(4 139.0(4 ') 106.3(5 120.2(3) 135.3(4 119.7(4) 129.4(2) 135.3(4 119.7(4) 135.0(2) 135.3(4 119.7(4) 135.0(2) 135.0(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

J. Pfeiffer, W. Maringgele, M. Noltemeyer, A. Meller

 CH_{3}^{+} , 73 (100) [Si(CH_{3}^{+})₃]⁺; FI 595 (100) [M - H]⁺. - NMR: $\delta^{1}H = 0.37$ (s); $\delta^{29}Si = 5.70$.

 $\begin{array}{rll} C_{18}H_{54}GeN_6Si_6 \ (595.8) & \mbox{Ber. C} \ 36.29 \ H \ 9.14 \\ & \mbox{Gef. C} \ 35.10 \ H \ 7.95 \end{array}$

Tab. 9. Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope thermische Parameter (pm² $\cdot 10^{-1}$) von 18 (äquivalente isotrope *U* berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors)

-				
	×	У	z	U(eq)
Ge'	1066(1)	4985(1)	4484(1)	38(1)
N(1')	1099(6)	5128(3)	3405 (3)	66(2)
C(1')	-114(9)	5655(5)	2889(4)	96(4)
C(2')	2527(9)	5092(5)	3140(4)	88(3)
C(3')	3574(7)	4530(5)	3776(5)	80(3)
N(2')	2994(4)	4774(3)	4564(3)	57(2)
C(4')	3798(6)	4221(5)	5233(4)	78(3)
N	-113(4)	5875(3)	5082(2)	37(1)
S1'	-446(1)	7079(1)	5110(1)	37(1)
0(1')	-104(4)	7558(2)	4257(2)	54(1)
C(10')	917(6)	8048(4)	3944(3)	59(2)
C(11')	2422(7)	7463(6)	4180(5)	96(4)
$C(12^{+})$	707(9)	8151(6)	3055(4)	99(4)
C(13.)	609(9)	9014(5)	4255(5)	108(4)
	-2155(3)	7434(2)	5296(2)	45(1)
$C(20^{-1})$	-3194(5)	8353(3)	5226(3)	51(2)
C(21)	-2561(6)	9105(4)	5540(4)	72(3)
C(22)	-1620(0)	8240(4)	5719(4)	/5(3)
	-3029(7)	7425(2)	4353(4)	82(3)
	920(7)	7435(3)	5756(2)	54(1)
ciari	1302(11)	8094(6)	6817(5)	118(4)
C(32')	2189(8)	6363(6)	6633(5)	105(4)
c(331)	-326(9)	7048(6)	7067(4)	98(4)
Ge	5087(1)	42(1)	784(1)	70(1)
N(1)	3965 (14)	-65(6)	1604 (5)	158(5)
C(1)	2567(17)	-47(12)	1571 (11)	299(15)
C(2)	4482(21)	125(9)	2317(7)	217 (12)
C(3)	6018(21)	54(10)	2248(7)	222 (11)
N(2)	6382(14)	218(6)	1451(5)	155(5)
C(4)	7683(15)	404(10)	1275(10)	260(12)
N .	4458(5)	897(3)	-89(2)	53(2)
Si	3766(2)	2101(1)	-185(1)	48(1)
0(1)	4066(8)	2458(4)	-1071(4)	142(3)
C(10)	4527(8)	3029(5)	-1603(4)	76(3)
C(11)	4332(15)	2702(9)	-2380(6)	195(8)
C(12)	3714(12)	4037(6)	-1560(6)	142(6)
C(13)	6028(12)	2918(12)	-1458(9)	254(13)
0(2)	4560(7)	2539(4)	443(4)	138(3)
C(20)	4414(8)	3171(5)	1014(4)	72(3)
C(21)	3504(10)	4140(5)	758(5)	115(4)
C(22)	5849(14) 2066(17)	3243(11)	1113(10)	245(12)
	2112(6)	2805(8)	1/44(7)	238(10)
C(30)	2112(0)	2443(3)	-43(5)	140(3)
C(31)	480(16)	2303(0)	-204(5)	79(3)
C(32)	25(14)	3558(10)	-327(11)	266(13)
C(33)	149(18)	2241 (16)	454(10)	459(28)
/	()	()		

0°C in THF. Es wird abfiltriert und mit wenig THF gewaschen. Ausb. 9.9 g (60%). Farblose Kristalle, Schmp. 176–179°C. – MS: m/z (%) EI 645 (0.7) [M – CH₃]⁺, 73 (100) [Si(CH₃)₃]⁺; FD 468 (70) [M – RR'N]⁺, 192 (100) [RR'N]⁺. – NMR: δ^{1} H = –0.56 (s, 9H), 0.21 (s, 18H), 0.44 (s, 9H), 2.33 (s, 6H), 2.39 (s, 6H), 6.92 (m, 6H); δ^{13} C = 4.75, 6.28, 6.79 (alle SiCH₃), 22.38 + 22.60 (2,6-CH₃), 125.22, 128.70, 128.96, 139.45, 143.70 (C₆H₃); δ^{14} N = –143, –204 (2:1); δ^{29} Si = 4.50, 6.85, 8.56.

 $\begin{array}{rll} C_{28}H_{54}GeN_6Si_4 \ (659.7) & \mbox{Ber. C } 50.98 \ H \ 8.25 \\ & \mbox{Gef. C } 51.33 \ H \ 8.75 \end{array}$

7: Aus 11.4 g (25 mmol) D und 5.8 g (50 mmol) (CH₃)₃SiN₃ bei

8: Aus 12.1 g (25 mmol) E und 5.8 g (50 mmol) (CH₃)₃SiN₃ bei 20 °C in THF. Nach Abfiltrieren und Waschen mit wenig THF, Ausb. 9.8 g (57%). Farblose Kristalle, Schmp. 178–180 °C. Einkristalle aus heißer konz. THF-Lösung beim langsamen Erkalten. – MS: m/z (%) EI 673 (2) [M – CH₃]⁺; FD 688 (44) [M]⁺, 412 (100) [(RR'N)₂]⁺. – NMR: δ^{1} H = -0.56 (s, 9H), 0.19 (s, 18H),

2: Aus 9.8 g (25 mmol) A und 7.2 g (25 mmol) (t-C ₄ H ₉ O) ₃ SiN ₃
bei 25°C in THF. Ausb. etwa 9 g (53%) leicht gelblichweißer Fest-
stoff. Nicht analysenrein. Zers. bei > 60 °C. – NMR: $\delta^1 H = 0.37$
(s, SiCH ₃), 1.34 [s, C(CH ₃) ₃]; $\delta^{13}C = 6.15$ (SiCH ₃), 31.79 (C - CH ₃),
73.29 (O-C).

Azidotris[bis(trimethylsilyl)amino]german (6), Azido[bis(trimethylsilyl)amino]bis[(2,6-dimethylphenyl)(trimethylsilyl)amino]german (7), Azido[bis(trimethylsilyl)amino]bis[(2,4,6-trimethylphenyl)(trimethylsilyl)amino]german (8)

6: Aus 9.8 g (25 mmol) **A** und 5.8 g (50 mmol) (CH₃)₃SiN₃ bei 20°C in THF. Ausb. 9.8 g (66%), aus CH₃CN umgelöst. Farblose Kristalle, Schmp. 188–190°C. – MS: m/z (%) EI 581 (3) [M –

0.42 (s, 9H), 2.18 (s, 6H), 2.27 (s, 6H), 2.32 (s, 6H), 6.72 (m, 4H); $\delta^{13}C = 4.75, 6.30, 6.61$ (alle SiCH₃), 20.59 (4-CH₃), 22.32 + 22.54 (2,6-CH₃), 129.33, 129.66, 134.41, 138.90, 138.96, 140.91; $\delta^{14}N = -143, -200$ (2:1); $\delta^{29}Si = 4.36, 6.60, 8.56$.

C₃₀H₅₈GeN₆Si₄ (687.8) Ber. C 52.39 H 8.50 Gef. C 52.17 H 8.55

1,1',3,4'-Tetrakis(trimethylsilyl)spiro[[1,3]diaza[2]germaindan-2,5'-[1,2,3,4]tetraza[5]germa-2-cyclopenten] (10); 1',4'-Bis(triethylsilyl)-1,3-bis(trimethylsilyl)spiro[[1,3]diaza[2]germaindan-2,5'-[1,2,3,4]tetraza[5]germa-2-cyclopenten (11); 5,5-Bis[bis(trimethylsilyl)amino]-1,4-dibenzyl- (12); 5,5-Bis[(2,6-dimethylphenyl)(trimethylsilyl)amino]-1,4-diphenyl- (13); 1,4-Dibenzyl-5,5-bis[(2,6-dimethylphenyl)(trimethylsilyl)amino]- (14); 1,4-Diphenyl-5,5-bis [(2,4,6-trimethylphenyl)(trimethylsilyl)amino]- (15); 1,4-Dibenzyl-5,5-bis[(2,4,6-trimethylphenyl)(trimethylsilyl)amino]- 1,2,3,4-tetraza-5-germa-2-cyclopenten (16)

10: Aus 8.1 g (25 mmol) 9 und 5.8 g (50 mmol) (CH₃)₃SiN₃ bei 20 °C in Pentan. Umgelöst aus CH₃CN. Ausb. 7.2 g (55%), weißer Feststoff, Schmp. 220–222 °C. – MS: m/z (%) EI 526 (12) [M]⁺, 73 (100) [(CH₃)₃Si]⁺; FI 526 (100). – NMR: δ^{1} H = 0.23 (s, 18 H), 0.25 (s, 18 H), 6.6–7.0 (m, 4H); δ^{13} C = -0.08, 0.15 (SiCH₃), 114.24 und 118.94 (C₆H₄), 137.61 (NC₆H₄); δ^{29} Si = 6.54, 11.46.

 $\begin{array}{rl} C_{18}H_{40}GeN_6Si_4 \ (524.5) & Ber. \ C \ 41.14 \ H \ 7.67 \\ & Gef. \ C \ 40.55 \ H \ 7.72 \end{array}$

11: Aus 9.2 g (25 mmol) 9 und 7.9 g (50 mmol) (C_2H_3)₃SiN₃ bei 25 °C in Pentan. Bei -30 °C aus der Lösung kristallisiert. Ausb. 5.6 g (37%), farblose Kristalle, Schmp. 110–112 °C. – MS: m/z (%) EI 610 (24) [M]⁺; FI 610 (100) [M]⁺. – NMR: δ^1 H = 0.25 (s, 18 H), 0.75 (q, 12 H), 0.97 (t, 18 H) ($^3J_{HH}$ = 7.9 Hz), 6.7–7.0 (m, 4H); δ^{13} C = 0.31 (SiCH₃), 5.11 (SiCH₂), 7.09 (C–CH₃), 114.13 + 118.69 (C_6H_4), 137.48 (NC₆H₄); δ^{29} Si = 6.39, 14.79.

C₂₄H₅₂GeN₆Si₄ (609.7) Ber. C 47.28 H 8.60 Gef. C 48.28 H 8.61

12: Aus 9.8 g (25 mmol) A und 6.7 g (50 mmol) $C_6H_5CH_2N_3$ bei 20 °C in THF. Aus Acetonitril umkristallisiert. Ausb. 7.3 g (46%), weiße Kristalle, Schmp. 148–149 °C. – MS: m/z (%) El 632 (18) [M]⁺, 91 (100) [$C_6H_5CH_2$]⁺. – NMR: $\delta^1H = 0.20$ (s, 36 H), 4.76 (s, 4 H), 7.2–7.6 (m, 10 H); $\delta^{13}C = 5.40$ (SiCH₃), 53.09 (CH₂), 126.98, 128.07, 128.46, 139.22; $\delta^{29}Si = 5.67$.

C₂₆H₅₀GeN₆Si₄ (631.7) Ber. C 49.44 H 7.98 Gef. C 48.93 H 7.57

13: Aus 11.4 g (25 mmol) D und 6.0 g (50 mmol) $C_6H_5N_3$ bei 20°C in THF. Umkristallisiert aus Acetonitril. Ausb. 6.4 g (38%), weißer Feststoff, Schmp. 209–211°C. – MS: m/z (%) EI 668 (6) $[M]^+$, 73 (100) $[(CH_3)_3Si]^+$. – NMR: $\delta^1H = -0.18$ (s, 18H), 2.02 (s, 12H), 6.58 (m, 6H), 7.0–7.5 (m, 6H), 7.7–7.9 (m, 4H); $\delta^{13}C =$ 2.15 (SiCH₃), 22.13, 121.51, 123.69, 124.79, 128.28, 128.43, 136.77, 142.41, 143.73; $\delta^{29}Si = 12.99$. – Die C,H-Analysen zeigen trotz spektroskopischer Reinheit keine konstanten Werte.

14: Aus 11.4 g (25 mmol) D und 6.7 g (50 mmol) $C_6H_5CH_2N_3$. Bei 20°C in THF. 16.5 g Rohprodukt wurden aus Acetonitril umgelöst und anschließend mit Hexan gewaschen. Ausb. 5.6 g (32%), weißes Pulver, Schmp. 153–155°C. – MS: m/z (%) EI 696 (5) $[M]^+$, 73 (100) $[(CH_3)_3Si]^+$; FI 696 (100). – NMR: $\delta^1H = -0.26$ (s, 18H), 2.13 (s, 12H), 4.89 (s, 4H), 6.65 (m, 6H), 7.2–7.4 (m, 6H), 7.5–7.7 (m, 4H); $\delta^{13}C = 2.13$ (SiCH₃), 21.55 (o-CH₃), 53.84 (CH₂), 124.22, 127.03, 127.99, 128.28, 128.79, 136.42, 139.30, 143.20; $\delta^{29}Si =$ 10.72. – Die C,H-Analysen zeigen trotz spektroskopischer Reinheit keine konstanten Werte. 15: Aus 12.1 g (25 mmol) E und 6.0 g (50 mmol) $C_6H_5N_3$. Reaktionsbedingungen und Reinigung wie bei 14. Ausb. 8.2 g (47%), weißes Pulver, Schmp. 216–218°C. – MS: m/z (%) EI 696 (14) $[M]^+$, 73 (100) $[(CH_3)_3Si]^+$; FI 696 (100). – NMR: $\delta^1H = -0.18$ (s, 18H), 1.98 (s, 12H), 2.12 (s, 6H), 6.34 (m, 4H), 7.1–7.2 (m, 2H), 7.3–7.5 (m, 4H), 7.7–7.8 (m, 4H); $\delta^{13}C = 2.12$ (SiCH₃), 20.57 (p-CH₃), 22.10 (o-CH₃), 121.49, 123.61, 128.37, 128.76, 133.70, 136.05, 139.81, 143.87; $\delta^{29}Si = 12.58$. – Die C,H-Analysen zeigen trotz spektroskopischer Reinheit keine konstanten Werte.

16: Aus 12.1 g (25 mmol) E und 6.7 g (50 mmol) $C_6H_3CH_2N_3$. Reaktionsbedingungen und Reinigung wie bei 14. Ausb. 5.6 g (31%), weißes Pulver, Schmp. 146–148°C. Einkristalle wurden durch langsames Abkühlen einer konzentrierten Lösung in Acetonitril erhalten. – MS: m/z (%) EI 724 (6) [M]⁺, 73 (100) [(CH₃)₃Si]⁺; FI 724 (100). – NMR: $\delta^1H = -0.27$ (s, 18H), 2.10 (s, 12H), 2.12 (s, 6H), 4.93 (s, 4H), 6.41 (m, 4H), 7.2–7.4 (m, 6H), 7.5–7.6 (m, 4H); $\delta^{13}C = 2.06$ (SiCH₃), 20.66 (p-CH₃), 21.63 (o-CH₃), 53.81 (CH₂), 127.03, 127.99, 128.71, 128.88, 133.06, 135.86, 139.36, 140.51; $\delta^{29}Si = 10.45$.

 $\begin{array}{rl} C_{38}H_{54}GeN_6Si_2 \ (723.65) & Ber. \ C \ 63.07 \ H \ 7.52 \\ Gef. \ C \ 63.35 \ H \ 7.10 \end{array}$

1,4,8,11-Tetramethyl-2,12-bis(trimethylsilyl)-1,4,6,8,11,12-hexaaza-5,7-digermadispiro[4.1.4]dodecan (17) und 1,4,8,11-Tetramethyl-6,12-bis(tri-tert-butoxysilyl)-1,4,6,8,11,12-hexaaza-5,7-digermadispiro[4.1.4.1]dodecan (18)

17: Aus 4.0 g (25 mmol) F und 2.9 g (25 mmol) (CH₃)₃SiN₃ bei 20 °C in THF. Umgelöst aus CH₃CN. Ausb. 2.0 g (32%), weißer Feststoff, Zers. ab 130 °C. – MS: m/z (%) EI 492 (14) [M]⁺, 320 (100) [M – 4 × NC₂H₅]⁺; FI 492 (100). – NMR: δ^{1} H = -0.01 (s, 18H), 2.68 (s, 12H), 2.93 (s, 8H); δ^{13} C = 2.57 (SiCH₃), 36.35 (NCH₃), 51.93 (NCH₂); δ^{29} Si = -1.51.

 $\begin{array}{cccccccc} C_{14}H_{38}Ge_2N_6Si_2 \ (491.9) & Ber. \ C \ 34.19 \ H \ 7.79 \ N \ 17.09 \\ Gef. \ C \ 33.73 \ H \ 7.83 \ N \ 17.50 \end{array}$

18: Aus 4.0 g (25 mmol) F und 7.2 g (25 mmol) $(t-C_4H_9O)_3SiN_3$ bei 25 °C in THF, abfiltriert und mit THF gewaschen. Ausb. 4.3 g (41%). Farblose Kristalle, Schmp. 244–246 °C. Einkristalle wurden aus einer heiß gesättigten THF-Lösung beim Abkühlen erhalten. – MS: m/z (%) EI 840 (6) [M]⁺, 57 (100) [C(CH_3)_3]⁺; FI 840 (50) [M]⁺, 825 (100) [M - CH_3]⁺. – NMR: $\delta^{1}H = 1.33$ (s, 54 H), 2.70 (s, 12H), 3.00 (s, 8H); $\delta^{13}C = 31.63$ (C - CH₃), 36.40 (NCH₃), 50.78 (NCH₂), 72.24 [OC(CH₃)₃]; $\delta^{29}Si = -89.84$.

 $\begin{array}{c} C_{32}H_{74}Ge_2N_6O_6Si_2 \ (840.3) \\ Gef. \ C \ 45.94 \ H \ 9.27 \ N \ 10.00 \\ Gef. \ C \ 45.94 \ H \ 9.27 \ N \ 10.35 \end{array}$

Bis[bis(trimethylsilyl)amino]hydroxy[(triethylsilyl)amino]german (3), Bis[bis(trimethylsilyl)amino]hydroxy[(tris-tert-butoxysilyl)amino]german (4) und Bis[bis(trimethylsilyl)amino]methoxy-[tri-tert-butoxysilyl)amino]german (5)

3: Wurde aus 9.8 g (25 mmol) A und 3.9 g (25 mmol) (C_2H_5)₃SiN₃ bei 25 °C in 40 ml Pentan unter Zugabe von 0.45 g (25 mmol) H₂O hergestellt. Die Substanz kristallisierte bei -30 °C und war noch mit geringen Mengen 1 verunreinigt. Ausb. 3.4 g (25%), gelbliche Kristalle, Schmp. 45 – 48 °C. – MS: m/z (%) EI 541 (6) [M]⁺, 73 (100) [(CH₃)₃Si]⁺; FI 541 (100).

4: Wurde analog zu 3 mit 7.2 g (25 mmol) (t-C₄H₉O)₃SiN₃ in THF erhalten. Ausb. 13.5 g (80%), weißer Feststoff (nicht analysenrein), Schmelzbereich 75-83 °C. - MS: m/z (%) EI 673 (1) [M]⁺, 57 (100) [(CH₃)₃C]⁺; FI 673 (100).

5: Eine Lösung von 1.6 g (2.4 mmol) 2 in CH₃OH wurde 10 min zum Sieden erhitzt. Nach dem Erkalten wurde filtriert, mit CH₃OH gewaschen und i. Vak. getrocknet. Ausb. 1.3 g (78%), weißer Feststoff, Schmp. 95-98 °C. – MS: m/z (%) EI 687 (2) [M]⁺, 57 (100) $[(CH_3)_3C]^+$; FI 687 (100). - NMR: $\delta^1 H = 0.30$ (s, 36 H), 0.58 (br, 1 H), 1.36 (s, 27 H), 3.52 (s, 3 H); $\delta^{13}C = 6.08$ (SiCH₃), 31.79 $(C-CH_3)$, 51.39 (OCH₃), 72.94 $[O-C(CH_3)_3]$; $\delta^{15}N = -332$, $-335 (1:2); {}^{1}J_{\rm NH} = 66 \text{ Hz}; \delta^{29}\text{Si} = -85.85, 3.41.$

 $C_{25}H_{67}GeN_{3}O_{4}Si_{5}\ (686.9) \quad Ber.\ C\ 43.72\ H\ 9.83\ N\ 6.12$ Gef. C 43.99 H 9.99 N 6.03

1,3-Bis(trimethylsilyl)-1,3-diaza-2-germa(II)indan (9): Zu 16.2 g (0.15 mol) o-Phenylendiamin in 300 ml Hexan und 300 ml THF wurden unter Rühren 195 ml (0.30 mol) n-C4H9Li (15proz.) in Hexan so getropft, daß die Lösung eben zum Sieden kam. Nach Beendigung der Butanabspaltung wurde 6 h unter Rückfluß erhitzt, dann wurden bei 20°C 41.6 g (0.3 mol) (CH₃)₃SiCl in 200 ml Hexan zugetropft. Nach 6stdg. Rückflußerhitzen wurden nach Abdestillieren des Lösungsmittels und Destillation über eine Drehbandkolonne 30.3 g (80%) N,N'-Bis(trimethylsilyl)-o-phenylendiamin vom Sdp. $73^{\circ}C/0.008$ mbar erhalten (Schmp. $31 - 35^{\circ}C$). Von diesem wurden 25.3 g (0.10 mol) mit 0.20 mol n-C₄H₉Li lithiiert und nach abermaligem Erhitzen unter Rückfluß bei 20°C 23.2 g (0.10 mol) GeCl₂ · Dioxan in 100 ml THF zugetropft. Es wurde 2 h unter Rückfluß erhitzt und dann das Lösungsmittelgemisch unter vermindertem Druck abdestilliert. Das Verbleibende wurde durch Erhitzen im Ölbad auf 230°C bei 0.02 mbar vom LiCl in eine auf - 196°C gekühlte Falle destilliert. Die fraktionierte Destillation ergab 28.1 g (88%) 9 vom Sdp. 103-105°C/0.01 mbar (oranges Öl). Kristalle vom Schmp. 68-69°C wurden aus einer Lösung in Pentan erhalten, die zunächst bei -196°C eingefroren und dann langsam auf 7°C aufgetaut wurde. – MS: m/z (%) EI 324 (36) [M]⁺, 73 (100) [Si(CH₃)₃]⁺; FI 324 (100) (stärkster Peak des Isotopenmusters). - NMR: $\delta^{1}H = 0.51$ (s, 18H), 6.9-7.0 (m, 2H), 7.1-7.2 $(m, 2H); \delta^{13}C = 1.60 (SiC), 115.10 + 118.38 (C_6H_4), 145.80 (NC_6H_4);$ $\delta^{29}Si = 7.74.$

C12H22GeN2Si2 (323.1) Ber. C 44.61 H 6.86 N 8.67 Gef. C 43.48 H 6.97 N 7.69

CAS-Registry-Nummern

1: 117226-49-0 / 2: 117226-50-3 / 3: 117226-51-4 / 4: 117226-52-5 5: 117226-53-6 / 6: 117226-54-7 / 7: 117226-55-8 / 8: 117226-56-9 / 9: 117226-57-0 / 10: 117226-58-1 / 11: 117226-59-2 / 12: 117226-60-5 / 13: 117226-61-6 / 14: 117226-62-7 / 15: 117226-63-8 / 16: 117226-65-0 / 17: 117226-66-1 / 18: 117226-67-2 / A: 59863-12-6 / B: 5599-32-6 / C: 117226-68-3 / D: 97217-32-8 / E: 97217-33-9 / F: 51923-71-8 / N₃Si(CH₃)₃: 4648-54-8 / N₃Ph: 622-37-7 / N₃CH₂Ph: 622-79-7 / GeCl₂-Dioxan: 28595-67-7 / o-Phenylendiamin: 95-54-5 / N,N'-Bis(trimethylsilyl)-o-phenylendiamin: 13435-10-4

- ¹⁾ J. Satgé, Adv. Organomet. Chem. 21 (1982) 241.
- ²⁾ P. Rivière, A. Cazès, A. Castel, M. Rivière-Baudet, J. Satgé, J. Organomet. Chem. 155 (1979) C 58.
- ³⁾ A. Meller, C. P. Graebe, J. Pfeiffer, 5th International Conference on the Organometallic and Coordination Chemistry of Germanium, Tin, and Lead, Padua 1986, Proceedings of Papers C 17.
- 41 A. Meiler, C. P. Gräbe, Chem. Ber. 118 (1985) 2020.
- ⁵⁾ Ch. Glidewell, D. Lloyd, K. W. Lumbard, J. S. McKechnie, Tetrahedron Lett. 28 (1987) 343.
- ⁶⁾ Ch. Glidewell, D. Lloyd, K. W. Lumbard, J. C. McKechnie, M. Hursthouse, R. L. Short, J. Chem. Soc., Dalton Trans. 1987, 2981.
- ⁷⁾ N. Wiberg, P. Karampatses, C.-K. Kim, Chem. Ber. 120 (1987) 1203.
- ⁸⁾ N. Wiberg, P. Karampatses, C.-K. Kim, Chem. Ber. 120 (1987) 1213.
- 9 N. Wiberg, G. Preiner, P. Karampatses, C.-K. Kim, K. Schurz, Chem. Ber. 120 (1987) 1357.
- ¹⁰⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 53260, des Autors und des Zeitschriftenzitats angefordert werden.
- ¹¹⁾ M. Noltemeyer, G. M. Sheldrick, C. P. Gräbe, A. Meller, unveröffentlicht.
- ¹²⁾ M. F. Lappert, M. J. Slade, J. L. Atwood, M. J. Zaworotko, J. Chem. Soc., Chem. Commun. 1980, 621.
- ¹³⁾ M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière, M. Rivière-Baudet, J. Chem. Soc., Dalton Trans. 1977, 2004.
- ¹⁴⁾ R. O. Lindsay, C. F. H. Allen, Org. Synth. Coll. Vol. III (1955) 710.
- ¹⁵⁾ T. Curtius, G. Erhart, Ber. Dtsch. Chem. Ges. 55 (1922) 1559.
 ¹⁶⁾ N. Wiberg, B. Neruda, Chem. Ber. 99 (1966) 740.
- ¹⁷⁾ S. P. Kolesnikov, I. S. Rogozhin, O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim. 10 (1974) 2379.

[220/88]